辅政教育

网站公告:
  • 数学运算汇编11

  • 信息来源:辅政教育    浏览次数:    最后发表时间:2013-02-03
  • 【201】现有甲、乙两个水平相当的技术工人需进行三次技术比赛,规定三局两胜者为胜方。如果在第一次比赛中甲获,这时乙最终取胜的可能性有多大?
    A.1/2;B.1/3;C.1/4;D.1/6
    分析:选C。条件概率。令乙最终取胜a,第一次比赛中甲获为事件b,则p(a|b)=p(ab)/p(b),p(ab)=第一次比赛中甲获的概率×第二次乙获胜的概率×第三次乙获胜的概率=(1/2)×[(1/2)×(1/2)]=1/8,p(b)=1/2,因此p(a|b)=(1/8)/(1/2)=1/4
     
    【202】柴油机上有两个相互咬合的齿轮,甲齿轮有72个齿,乙齿轮有28个齿。其中某一队齿轮,从第一次相遇到第二次相遇,两个齿轮共转了多少圈?
    分析:答案25。求72和28的最小公倍数,即504,则504/72+504/28=甲的圈数+乙的圈数=25。
     
    【203】一只木箱内有白色乒乓球和黄色乒乓球若干个。小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩‘8个;如果换一种取法:每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。问原 木箱内共有乒乓球多少个? 
    A.246个;B.258个;C.264个;D.272个;
    分析:选C。
    思路一:因为题目问的是共有球多少个,而不分颜色,因此,小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩‘8个=>实际上,可以看成每次取8个,最后正好取完。每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个=>实际上,可以看作每次取10个,最后剩4个。综上,总共的球数既要能被8整除,又要除以10余4。
    思路二:5n+8=7m,3n=3m+24,解二元一次方程得m=24,n=32,共有乒乓球5n+8+3n=264
     
    【204】甲、乙两瓶酒精溶液分别重300克和120克;甲中含酒精120克,乙中含酒精90克。问从两瓶中应各取出多少克才能兑成浓度为50%的酒精溶液140克?
    A.甲100克, 乙40克;B.甲90克, 乙50克;
    C.甲110克, 乙30克;D.甲70克, 乙70克;
    分析:选A。
    思路一:设需要甲乙各X,Y克。从题干中可得知甲的浓度为40%,乙的为75%。列方程:(40%×X+Y×75%)/(X+Y)=50% 解出来,X=100 Y=40
    思路二:设需要甲乙各X,Y克。通过溶质相同列方程。140×50%=x×(120/300)+y×(90/120),70=(2/5×x+(3/4)×y,把选项带入即可。
     
    【205】甲车以每小时160千米的速度,乙车以每小时20千米的速度,在长为210千米的环形公路上同时、同地、同向出发。每当甲车追上乙车一次,甲车减速1/3 ,而乙车则增速1/3 。问:在两车的速度刚好相等的时刻,它们共行驶了多少千米?(   )
    A. 1250;B. 940;C. 760;D. 1310;
    分析:选a。160×(2/3)`x次=20×(4/3)′x次   x=3   第三次追上速度相等。总路程就是甲+乙走的路程   甲=210×3+乙   总路程=630+2乙;甲3次速度:160 320/3   640/3 乙:20   80/3   320/3;他们的差140,   240/3,320/3,每次路程差都是210,主要知道每次追上,都是他们路程差除以速度差=一次追上时间,S乙就是3段乙走的路和 :20×(210/140)+(210×30/240)×(80/3)+(320/9)×(210×9/320);S乙=20×(210/140)+210/3+210=30+70+210=310;总路程=630+620=1250
     
    【206】龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米.乌龟不停地跑,兔子却是一边跑一边玩,它先跑一分钟,然后玩15分钟,又跑两分钟,然后玩15分钟,又跑3分钟,然后又玩15分钟......那么先到达终点的比后到达终点的快多少分钟?
     A 104分钟;B 90.6分钟;C 15.6分钟;D 13.4分钟;
    分析:选D。跑完全程乌龟需要(5.2/3)×60=104分钟;兔子需要(5.2/20)×60=15.6分钟;15.6=1+2+3+4+5+0.6;所以兔子一共玩了5×15=75分钟;所以兔子共用了15.6+75=90.6分钟;兔子还是比乌龟快104-90.6=13.4分钟;
     
    【207】用绳子量桥高,在桥上将绳子4折垂至水面,余3米,把绳子剪去6米,3折后,余4米,求桥高是多少米?
    A.6;B.12;C.9;D.36;
    分析:选A。令桥高h,4h+3×4=6+3h+4×3,h=6
     
    【208】如果你有一个5毫升的水杯和一个3毫升的水杯,如何能准确的量出4毫升的水?
    分析:把倒满5毫升水杯子倒入空的3毫升杯子,倒至3毫升停止,把装满3毫升水的杯子倒空。再把5毫升杯子中所省的2毫升倒入空的3毫升的杯子,倒完为止。最后向5毫升空杯子里倒满,然后把满的5毫升的水向盛有2毫升水的3毫升杯子倒,倒至3毫升为止。此时,5毫升杯子中就盛4毫升水。
     
    【209】地球陆地总面积相当于海洋总面积的41%,北半球的陆地面积相当于其海洋面积的65%,那么,南半球的陆地面积相当于其海洋面积的______%
    分析:把北半球和南半球的表面积都看做1,地球陆地总面积相当于海洋总面积的41%,若令海洋为x,陆地为y,则
    y/x=0.41=>x/y=1/0.41=>1+x/y=1+1/0.41=>(x+y)/y=(1+0.41)/0.41=>y/(x+y)=0.41/(1+0.41),即陆地占地球总的表面积的百分比。(1+1) ×(0.41/(1+0.41))=0.5816求出陆地的总面积。北半球陆地面积占北半球总面积的百分比为0.65/(1+0.65),北半球陆地面积为:1×[0.65/(1+0.65)]=0.3940。所以南半球陆地有:0.5816-0.3940=0.1876, 所以南半球陆地占海洋的0.1876/(1-0.1876) ×100%=23%.
     
    【210】12+22+32+42+...+252=
    分析:运用求和公式,对于12+22+32+.....+n2=[n×(n+1)×(2n+1)]/6。对于该题,n=25,即25×26×51/6=5525。
     
    【211】一水池有一根进水管不间断地进水,另有若干根相同的抽水管。若用24根抽水管抽水,6小时可以把池中的水抽干;若用21根抽水管抽水,8小时可将池中的水抽干;若用16根抽水管,需几小时将池中的水抽干?
    A.16;B.14;C.18;D.20
    分析:选C。设进X水,需y小时抽干,则(24-x)/(21-x)=8/6;x=12     (24-12)/(16-12)=Y/6;Y=18
     
    【212】有甲、乙两汽车站,从甲站到乙站与从乙站到甲站每隔10分同时各发车一辆,且都是1小时到达目的地。问某旅客乘车从甲站到乙站,在途中可看到几辆从乙站开往甲站的汽车?
    A. 9;B. 13;C. 14;D. 11;
    分析:选D。旅客开始前,路上有乙开来的车5(去掉已经到甲的),旅客到乙需60分钟,这段时间有6从乙出发,共5+6=11;
     
    【213】有从1到8编号的8个求,有两个比其他的轻1克,用天平称了三次,结果如下:第一次1+2>3+4   第二次5+6<7+8   第三次1+3+5=2+4+8,求轻的两个球的编号!
    A.1和2;B.1和5;C.2和4;D.4和5
    分析:选d。1+2>3+4 ,说明3和4之间有个轻的,5+6<7+8 ,说明5和6之间有个轻的,1+3+5=2+4+8,说明因为3和4必有一轻,要想平衡,5和4必为轻
     
    【214】青蛙在井底向上爬,井深10米,青蛙每次跳上5米,又滑下来4米,象这样青蛙需跳几次方可出井?
    A、6次;B、5次;C、9次;D、10次
    分析:选A。每跳一次,实际上上升1米,当跳过4次后,上升了4米,还剩6米,当跳过5次后,上升了5米,还剩45米,则第6次跳出井。
     
    【215】在周长为200米的圆的直径两端,甲乙两个人分别以每秒6米,每秒5米的骑车速度同时同向出发,沿圆周行驶。问;16秒内,甲追上乙几次  
    A.4;B.5;C.6;D.7
    分析:选B。首先时间肯定是16分,16分=960秒,第一次追上只需100秒,因为只相差半圈(100M),以后每次追上要200秒,这样一共能追上5次,共需900秒。
     
    【216】甲杯中有纯酒精12克,乙杯中有水15克,第一次将甲杯中的部分纯酒精倒入乙杯,使酒精与水混合。第二次将乙杯中的部分混合溶液倒入甲杯,这样甲杯中纯酒精含量为50%,乙杯中纯酒精含量为25%。问 第二次从乙杯倒入甲杯的混合溶液是多少克?
    A.13;B.14;C.15;D.16;
    分析:选b。乙杯中酒精比率为25%是不会变的,再取出乙中的混合液倒入甲,浓度不变,所以,第一次甲中倒入乙中 必定是5g x/(x+15)=25% => x=5。然后甲中就只有12-5=7g了(0.25y+7)/(y+7)=50% => y=14
     
    【217】有一个四位数3AA1,它能被9整除,请问数A代表几?(1980年美国长岛小学数学竞赛试题)
    分析:已知四位数3AA1能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数。因为A是一个数字,只能是0、1、2、3、……、9中的某一个整数,最大值只能是9。若A=9,那么3+A+A+1=22,22<27,所以3AA1的各位数字和只能是9的1倍或2倍,即9或18。
    当3+A+A+1=9时,A=2.5,不合题意。
    当3+A+A+1=18时,A=7,符合题意,所以A代表7,这个四位数是3771。
     
    【218】只有1和它本身为约数的数叫质数,例如2、3、5、7、11……都是质数。如果一个长方形的长和宽均为质数个单位,并且周长是36个单位,那么这个长方形的面积最多可以是多少个平方单位?(1990年美国小学数学奥林匹克邀请赛试题)
    分析:假设这个长方形的面积最大时长为A个单位,宽为B个单位。根据题意可知:(A+B)×2=36 因此,A+B=18 长方形的面积S=A×B。经过尝试可知A和B均为质数个单位,而A与B的和是18,可有三组结果①A=17,B=1;②A=13,B=5;③A=11,B=7。当A与B越接近,长方形的面积越大,因此,这个长方形的面积最多可以是11×7=77个平方单位。
    本题的解答依据了这样一个性质:当A与B的和一定时,A与B越接近,两者的积越大。当A与B相等时,积最大。而本题要求A、B均为质数,所以A=B=9不合题意。这个性质在实际生活中经常运用,请各位学员一定记住并能灵活运用
     
    【219】8754896×48933=(   )
    A.428303315966        B.428403225876
    C.428430329557      D.428403325968
    解题思路:把两个乘积因子个位数相乘,其个位数应为8,即排除A、B、C。答案为D
     
    【220】3543278×2221515=(  )
    A.7871445226160       B.7861445226180 
    C.7571445226150     D.7871445226170
    解题思路:把两个乘积因子的十位数相乘,其积应为70,即排除A、B、C。答案为D
  • 关闭本页】 【返回顶部】 【打印此页】 【收藏此页
  • 相关内容:


    Copyright © 2017 版权所有 凌华辅政教育 www.zjfzgwy.com  备案号:浙ICP备13006442号 
    电话:0571-89839908(杭州)0579-82887768 (金华)13336143337 地址:浙江省金华市婺城区骆家塘浙师大科技楼

点击这里给我发消息